Abstract

Microbial biofilm indicates a cluster of microorganisms having the capability to display drug resistance property, thereby increasing its proficiency in spreading diseases. In the present study, the antibiofilm potential of thymoquinone, a black seed-producing natural molecule, was contemplated against the biofilm formation by Pseudomonas aeruginosa. Substantial antimicrobial activity was exhibited by thymoquinone against the test organism wherein the minimum inhibitory concentration of the compound was found to be 20 μg/mL. Thereafter, an array of experiments (crystal violet staining, protein count, and microscopic observation, etc.) were carried out by considering the sub-MIC doses of thymoquinone (5 and 10 μg/mL), each of which confirmed the biofilm attenuating capacity of thymoquinone. However, these concentrations did not show any antimicrobial activity. Further explorations on understanding the underlying mechanism of the same revealed that thymoquinone accumulated reactive oxygen species (ROS) and also inhibited the expression of the quorum sensing gene (lasI) in Pseudomonas aeruginosa. Furthermore, by taking up a combinatorial approach with two other reported antibiofilm agents (tetrazine-capped silver nanoparticles and tryptophan), the antibiofilm efficiency of thymoquinone was expanded. In this regard, the highest antibiofilm activity was observed when thymoquinone, tryptophan, and tetrazine-capped silver nanoparticles were applied together against Pseudomonas aeruginosa. These combinatorial applications of antibiofilm molecules were found to accumulate ROS in cells that resulted in the inhibition of biofilm formation. Thus, the combinatorial study of these antibiofilm molecules could be applied to control biofilm threats as the tested antibiofilm molecules alone or in combinations showed negligible or very little cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.