Abstract
Performing safe and efficient lane changes is a crucial feature for creating fully autonomous vehicles. Recent advances have demonstrated successful lane following behavior using deep reinforcement learning, yet the interactions with other vehicles on road for lane changes are rarely considered. In this paper, we design a hierarchical Deep Reinforcement Learning (DRL) algorithm to learn lane change behaviors in dense traffic. By breaking down overall behavior to sub-policies, faster and safer lane change actions can be learned. We also apply temporal and spatial attention to the DRL architecture, which helps the vehicle focus more on surrounding vehicles and leads to smoother lane change behavior. We conduct our experiments in the TORCS simulator and the results outperform the state-of-art deep reinforcement learning algorithm in various lane change scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.