Abstract
Caches are pervasively used in computer networks to speed up access by reusing previous communications, where various replacement policies are used to manage the cached contents. The replacement policy of a cache plays a key role in its performance, and is thus extensively engineered to achieve a high hit ratio in benign environments. However, some studies showed that a policy with a higher hit ratio in benign environments may be more vulnerable to denial of service (DoS) attacks that intentionally send requests for unpopular contents. To understand the cache performance under such attacks, we analyze a suite of representative replacement policies under the framework of TTL approximation in how well they preserve the hit ratios for legitimate users, while incorporating the delay for the cache to obtain a missing content. We further develop a scheme to adapt the cache replacement policy based on the perceived level of attack. Our analysis and validation on real traces show that although no single policy is resilient to all the attack strategies, suitably adapting the replacement policy can notably improve the attack resilience of the cache.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.