Abstract

Optical encryption methods, due to their efficient operation speed and parallel processing capabilities, hold significant importance in securing multidimensional and large-volume data. Enhancing the security of optical cryptosystems from the perspective of cryptanalysis holds significant importance currently. Presently, attack methods against optical encryption are complex, and the effectiveness of these attacks is insufficient. Security analysis solutions face limitations in both breadth and depth. Therefore, this paper proposes an attack on optical cryptosystems based on a skip connection network, demonstrating the susceptibility of optical cryptosystems to attacks based on neural network algorithms. The network model is trained on plaintext-ciphertext pairs, fitting equivalent keys without various additional conditions. It approximates plaintext information in high-dimensional space, directly obtaining corresponding plaintext through ciphertext information, expanding the applicability and enhancing the effectiveness of the attack scheme. Finally, the feasibility and effectiveness of the attack scheme were verified through computer simulations. The experiments indicate that the method proposed in this paper has low computational complexity, wide applicability, produces high-quality decrypted images, and high decipherment accuracy. This provides a universal approach for analyzing the security of various optical cryptosystems from the perspective of chosen plaintext attacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.