Abstract

While it is known that Retinoic Acid (RA) induces meiosis in mouse female fetal gonads, the mechanisms which regulate this process during spermatogenesis are poorly understood. We show that the All trans RA derivative (ATRA) and Kit Ligand (KL) increase meiotic entry of postnatal mouse spermatogonia in vitro without synergism. Competence to enter meiosis is reached by spermatogonia only at the stage in which they undergo Kit-dependent divisions. Besides increasing Kit expression in spermatogonia, ATRA also upregulates KL expression in Sertoli cells. Both ATRA and KL increase the expression of Stimulated by Retinoic Acid Gene 8 and Dmc1, an early meiotic marker. A specific Kit tyrosine kinase inhibitor prevents the increase in the number of meiotic cells induced by both the two factors, suggesting that they converge on common Kit-dependent signalling pathways. Meiotic entry induced by ATRA and KL is independent from their ability to affect germ cell viability, and is mediated by the activation of PI3K and MAPK pathways through Kit autophosphorylation. ATRA-induced phosphorylation of the two downstream kinases is mediated by a non-genomic mechanism.These data suggest that RA may control the timing of meiosis by influencing both the somatic and the germ cell compartment of the postnatal testis through the activation of the KL/Kit system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.