Abstract
Cone-rod dystrophy (CORD) is an inherited retinal degenerative disease characterized by progressive loss of cone and rod photoreceptors. Although several genes have been reported to cause autosomal dominant CORD (adCORD), the genetic causes of adCORD have not been fully elucidated. Here, we identified the ATP1A3 gene, encoding the α3 subunit of Na+, K+-ATPase, as a novel gene associated with adCORD. Using whole-exome sequencing (WES), we found a candidate mutation of ATP1A3 that co-segregated with the disease in an analysis of two affected patients and one healthy relative in an adCORD family. According to our RNA-seq data, we demonstrated that the Atp1a3 mRNA level was extremely high in the murine retina. Overexpression of mutant ATP1A3 in vitro led to a reduced oxygen consumption rate (OCR), reflecting the limited mitochondrial reserve capacity. Furthermore, we generated transgenic mice expressing the ATP1A3 cDNA with patient variant and found decreased electroretinogram (ERG) responses. Moreover, the mutant ATP1A3 is highly expressed in photoreceptor inner segment, where mitochondria are enriched. These results suggest that the ATP1A3 mutation is a new genetic cause responsible for adCORD and indicate that ATP1A3 plays an important role in retinal function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.