Abstract

P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+]i, activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl- cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier ( approximately 50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+i, BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+, Cl- cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4, 5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+, Cl- cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl- cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl- channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl- cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl- cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.