Abstract

A new simulation code for modelling extended defects e.g. linear (dislocations) and planar (surfaces and grain boundaries) at the atomistic level is introduced. One of the key components is the ability to calculate the Coulombic potential of a solid with one-dimensional periodicity. This approach has been applied to screw dislocations in MgO and we have evaluated the structure (including core size) and stability of the 〈100〉 and 1/2〈110〉 screw dislocations. The 1/2〈110〉 dislocation, which has the shortest Burgers vector, was found to be more stable, as predicted by elasticity theory, although the simulations show that elasticity theory underestimates the energy difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.