Abstract

Since the end of 1980s, bulk metallic glasses became available for various multi-component alloys. Because bulk metallic glasses are applicable to structural materials, their mechanical properties have become a matter of great interest in these decades. A characteristic feature of plastic deformation of metallic glasses at the ambient temperature is the localized shear deformation. Since we have no appropriate experimental technique, unlike crystalline matter, to approach microscopic deformation process in amorphous materials, we have to rely on computer simulation studies by use of atomistic models to reveal the microscopic deformation processes. In this article, we review atomistic simulation studies of deformation processes in metallic glasses, i.e., local shear transformation (LST), structural characterization of the local shear transformation zones (STZs), deformation-induced softening, shear band formation and its development, by use of elemental and metal–metal alloy models. We also review representative microscopic models so far proposed for the deformation mechanism: early dislocation model, Spaepen’s free-volume model, Argons’s STZ model and recent two-state STZ models by Langer et al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.