Abstract

Hydrogen is a clean and sustainable energy carrier which plays a major role in the transition of the global energy market to a less fossil fuel dependent future. Polymer-based materials are crucial in the production, storage, transportation, and energy extraction of hydrogen. More insights in the hydrogen-polymers interactions are required to guide material design and product development, especially for hydrogen solubility in polymers, which is crucial in many applications. The current study aims at rationalizing the determining factors of hydrogen solubility in two relevant polymers: polyamide-6 (PA-6) and high density polyethylene (HDPE). Based on atomistic molecular dynamics simulations and experimental data, we have reached several conclusions related to hydrogen and oxygen solubility in these two polymers. The crystal phases of PA-6 and HDPE are impenetrable to hydrogen and oxygen at elevated pressures, despite the small molecular size of hydrogen and oxygen. The practical implication for gas barrier applications is that polymer crystals act as impermeable obstacles and gas migration takes place primarily in the amorphous phase. Experimental hydrogen and oxygen solubilities in PA-6 and HDPE at elevated pressures can be predicted in a semiquantitative manner by molecular simulations. The discrepancies between experimental and predicted values could be attributed to neglect of the effect of crystal regions on the amorphous polymer domains. Although hydrogen is smaller than oxygen, it has been experimentally observed that hydrogen has a lower solubility in PA-6 and HDPE than oxygen. This observation has been confirmed by molecular simulations and attributed to the more favorable energetic interactions of oxygen with PA-6 and PE than of hydrogen. These interactions dominate the solubility behavior over the distribution of the accessible volume in the polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.