Abstract

We report atomistic simulations of the transport properties of Si-nanowire (SiNW) field-effect transistors. Results have been obtained within a self-consistent approach based on the nonequilibrium Green's function (NEGF) scheme in the density functional theory framework. We analyze in detail the operation of an ultrascaled SiNW channel device and study the characteristics and transfer characteristics behavior of the device while varying several parameters including doping, gate and oxide lengths, and temperature. We focus our attention to the quantum capacitance of the SiNW and show that a well-tempered device design can be accomplished in this regime by choosing suitable doping profiles and gate contact parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.