Abstract

The Ni-rich layered LiNi0.6Mn0.2Co0.2O2 (NMC622) is one promising cathode for lithium-ion batteries (LIBs), but suffers from poor cycling stability under high cutoff potentials. The performance degradation was reflected as capacity fading and voltage drop, having their roots in instable interface of NMC622. Aimed at improving interfacial stability, in this study, we deposited nanoscale ZrO2 coatings conformally over NMC622 cathodes using atomic layer deposition (ALD). We found that, under a high cutoff voltage (4.5 V), the ALD ZrO2 coatings evidently improved the performance of NMC622 cathode, showing better cyclability and higher sustainable capacity. In addition, the ALD coatings dramatically boosted the rate capability of NMC622. All these compelling performance results are ascribed to the atomic-scale tunable ZrO2 coatings via ALD, which create stable interface and thereby inhibit unfavorable evolutions. In the study, we utilize a suite of characterization tools and various analyses to clarify the effects of ALD ZrO2 coatings. This study will be helpful for improving the performance of nickel-rich cathodes via interfacial engineering using ALD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.