Abstract
Quantitative X-ray structural analysis coupled with reverse Monte Carlo (RMC) simulation was performed for characterizing the atomic-scale structure of γ-FeOOH (lepidocrocite) particles. These particles were formed by dipping pure iron or Fe-2mass%Si alloy into aqueous solutions containing Na 2 SO 4 or NaCI. The realistic atomic-scale structures of γ-FeOOH particles were estimated by fitting ordinary interference functions through the RMC simulation technique. The results revealed that the fundamental FeO 6 octahedral structural units and their linkages were distorted in the γ-FeOOH particles formed from the Fe-Si alloy. This distortion was considered to be caused by the incorporation of silicate species into these particles. Transmission electron microscopy and Fourier-transform infrared (FT-IR) spectroscopy were employed for observing the morphology of the particles and for characterizing their bonding structure, respectively. Further, the amount of γ-FeOOH particles formed was measured in order to investigate their formation processes. The changes in the pH and oxidation-reduction potential (ORP) of the solutions were monitored during the formation of γ-FeOOH particles. Inductively coupled plasma analyses were also performed for determining the amounts of iron and silicon in supernatant solutions. The results indicated that the formation process of γ-FeOOH particles in the solutions was influenced by the addition of silicon to iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.