Abstract
Electrochemical CO2 conversion into fuels is highly desirable to achieve carbon artificial cycles. Among electrocatalyst candidates, earth-abundant tin is subject to unsatisfied efficiency and selectivity. In this work, atomically-dispersed Sn nanoclusters modified with the trace of sulfur doping are proposed to efficiently electroreduce CO2 to C1 chemicals. This electrocatalyst is in situ derived from bis(benzene-1,2-dithiolato). It exhibits a high Faradaic efficiency (90%) for carbonaceous products at a moderate overpotential (0.75 V). Importantly, it is exploited for the formate formation with unprecedented partial current density (90 mA cm−2) and long-term stability (50 h) using the flow cell, better than most Sn-based catalysts. Electrochemical experiments and theoretical calculations manifest the promoting effect of trace sulfur on Sn nanoclusters, which stabilizes the *HCOOH intermediate and favors CO2 electroreduction. Hence, it emphasizes the importance of dopants and charge modulating for performance enhancement. This work unfolds a promising candidate for Sn electrocatalysts towards CO2 electroreduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.