Abstract

Atomically dispersed and nitrogen-coordinated single metal atom implanted into the carbon substrate holds great promise as Pt-liked catalysts for oxygen reduction reaction (ORR). However, the complicated synthetic procedures of single atomic catalysts heavily limit their widespread applications. Herein, the atomically dispersed Co stabilized by nitrogen species in carbon skeleton (Co-SAs/NC) is prepared by a controllable pyrolysis of the nano-confined Co-precursor, and further employed as alkaline ORR catalyst. The atomic configuration and electronic structure of Co-SAs/NC are systematic investigated by a wide range of advanced techniques, such as electron microscopic and X-ray absorption spectroscopy. As expected, Co-SAs/NC exhibites excellent ORR activity with a large onset and half-wave potentials, as well as good selectivity and favorable stability. More importantly, the outstanding ORR performances of Co-SAs/NC enable the assembled Zn-air battery to deliver a large specific capacity of 788.4 mAh•gZn-1, a maximum power density of 233.6 mW•cm-2, and a long cycle life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.