Abstract

Scanning tunneling microscopy and reflection high-energy electron diffraction under ultrahigh vacuum conditions were used to make an in situ study of atomic structures at the surface of an InAs/GaAs heterostructure grown by molecular-beam epitaxy. It was observed that the deposition of approximately 0.3 ML of indium on an arsenic-enriched GaAs(001)-2 × 4 surface leads to the formation of the 4 × 2 phase while the deposition of 0.6 ML indium leads to the appearance of a new 6 × 2 reconstruction. It is shown that layer-by-layer two-dimensional epitaxial growth of InAs on GaAs(001) as far as 13 monolayers can only be achieved if the growth front reproduces the 4 × 2 or 6 × 2 symmetry of the substrate and models of 4 × 2 and 6 × 2 reconstructions are proposed. Atomic-resolution images of faceted planes on the surface of three-dimensional islands in an InAs/GaAs(001) system were obtained for the first time and structural models of these were developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.