Abstract
Ge-Sb-Te based phase change alloys are currently used in optical data storage and are regarded as promising candidates to replace Flash memories. Detailed knowledge of structural defects in these materials is crucial for further understanding of the switching mechanisms, e.g., in recently proposed interfacial phase change memory. In the present work, atomic structure and dynamics of layered defects frequently reported in van der Waals bonded Ge-Sb-Te based materials and GeTeSb2Te3 based superlattices are studied using advanced transmission electron microscopy. It is shown that the defects are confined into two atomic layers of GeSb and Te and represent localized stacking faults. In situ experiments revealed that the GeSb and Te bilayers can be easily reconfigured into such bilayer stacking faults with subsequent formation of a new van der Waals gap, indicating a mechanism of structural reconfiguration of building blocks in layered Ge-Sb-Te compounds. Overall the results of the present work shed insights into the dynamics of van der Waals gaps rearrangement and mechanism of the layer exchange process in layered functional chalcogenide compounds, also relevant for an understanding of switching mechanisms in interfacial phase change alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.