Abstract

Determining bulk moduli is central to high-throughput screening of ultraincompressible materials. However, existing approaches are either too inaccurate or too expensive for general applications, or they are limited to narrow chemistries. Here we define a microscopic quantity to measure the atomic stiffness for each element in the periodic table. Based on this quantity, we derive an analytic formula for bulk modulus prediction. By analyzing numerous crystals from first-principles calculations, this formula shows superior accuracy, efficiency, universality, and interpretability compared to previous empirical/semiempirical formulae and machine learning models. Directed by our formula predictions and verified by first-principles calculations, 47 ultraincompressible crystals rivaling diamond are identified from over one million material candidates, which extends the family of known ultraincompressible crystals. Finally, treasure maps of possible elemental combinations for ultraincompressible crystals are created from our theory. This theory and insights provide guidelines for designing and discovering ultraincompressible crystals of the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.