Abstract

In this Letter, direct experimental evidence is provided for understanding the thermal stability with respect to crystallization in the Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) glass-forming liquid. Through high-resolution transmission electron microscopy, the atomic-structure evolution in the glass-forming liquid during the isothermal annealing process is clearly revealed. In contrast with the existing theoretical models, our results reveal that, prior to nanocrystallization, there exists a metastable state prone to forming icosahedralike atomic clusters, which impede the subsequent crystallization and hence stabilize the supercooled liquid. The outcome of the current research underpins the topological origin for the excellent thermal stability displayed by the Zr-based bulk metallic glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.