Abstract
Resolving laser-driven electron dynamics on their natural time and length scales is essential for understanding and controlling light-induced phenomena. Capabilities to reveal these dynamics are limited by challenges in interpreting wave mixing of a driving and a probe pulse, low energy resolution at ultrashort time scales and a lack of atomic-scale resolution by standard spectroscopic techniques. Here, we demonstrate how ultrafast x-ray diffraction can access fundamental information on laser-driven electronic motion in solids. We propose a method based on subcycle-resolved x-ray-optical wave mixing that allows for a straightforward reconstruction of key properties of strong-field-induced electron dynamics with atomic spatial resolution. Namely, this technique provides both phases and amplitudes of the spatial Fourier transform of optically-induced charge distributions, their temporal behavior, and the direction of the instantaneous microscopic optically-induced electron current flow. It captures the rich microscopic structures and symmetry features of laser-driven electronic charge and current density distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.