Abstract

Enhancements in AlGaN/GaN high-electron-mobility transistor (HEMT) performance have been realized through ultrathin (4 nm) AlN passivation layers, formed by atomic layer epitaxy (ALE). A combination of ex situ and in situ surface cleans prepare the surface for deposition of ALE AlN. HEMTs passivated by high crystallinity AlN, grown at 500 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{\circ}{\rm C}$</tex></formula> , show improvements in 2-D electron gas sheet carrier density, gate leakage current, off-state drain leakage current, subthreshold slope, and breakdown voltage. In addition, degradation of dynamic on resistance during pulsed off-state voltage switching stress is suppressed by <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\sim}{50\%}$</tex></formula> compared with HEMTs passivated by conventional plasma enhanced chemical vapor deposition <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm SiN}_{x}$</tex></formula> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.