Abstract

The authors present the elaboration of zinc indium sulfide (ZnInxSy) thin films in the context of a cadmium-free buffer layer development for copper indium gallium diselenide photovoltaic solar cells. The films were deposited by atomic layer deposition (ALD) from ZnEt2 (DEZ), In(acac)3 (acac = acetylacetonate), and H2S at 200 °C. In situ growth kinetics studies were performed with the quartz crystal microbalance technique to determine the respective mass gain per cycle of ZnS and In2S3 layers, allowing determination of the atomic compositions of the ZnInxSy thin films to be expected if the deposition strictly follows the rule of mixtures. As the experimental atomic compositions of the ZnInxSy films differ significantly from this rule, a comprehensive study of the growth mechanism was performed to determine the nature of the side reactions. First, an exchange reaction between In2S3 and the Zn precursor was identified, though this process is not sufficient to account for the experimental data, and therefore, a second process which corresponds to the diffusion of species within the film was also found to take place. Ultimately, the atomic compositions of the ZnInxSy films can be explained by a rate-limited exchange reaction at the surface between DEZ and the In2S3 layer, combined with diffusion of the species in the whole film. More generally, such side reactions should be considered in ALD of multinary compounds, even at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.