Abstract

Chromium (Cr) is a common heavy metal that has severe impacts on the ecosystem and human health. Capacitive deionization (CDI) is an environment-friendly and energy-efficient electrochemical purification technology to remove Cr from polluted water. The performance of CDI systems relies primarily on the properties of electrodes. Carbon-nanotubes (CNTs) membranes are promising candidates in creating advanced CDI electrodes and processes. However, the low electrosorption capacity and high hydrophobicity of CNTs greatly impede their applications in water systems. In this study, we employ atomic layer deposition (ALD) to deposit TiO2 nanoparticulates on CNTs membranes for preparing electrodes with hydrophilicity. The TiO2-deposited CNTs membranes display preferable electrosorption performance and reusability in CDI processes after only 20 ALD cycles deposition. The total Cr and Cr(VI) removal efficiencies are significantly improved to 92.1% and 93.3%, respectively. This work demonstrates that ALD is a highly controllable and simple method to produce advanced CDI electrodes, and broadens the application of metal oxide/carbon composites in the electrochemical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.