Abstract
Atomic layer deposition (ALD) has successfully provided thin films of organic-inorganic hybrid materials based on saturated linear carboxylic acids and trimethylaluminium (TMA). Films were grown for seven carboxylic acids: oxalic, malonic, succinic, glutaric, pimelic, suberic and sebacic acid, i.e. ranging from 2 to 10 carbon atoms in the molecular structure. These processes show exceptionally high growth rates; up to 4.3 nm/cycle for the pimelic acid-TMA system. Quartz crystal microbalance measurements of the growth dynamics indicate that all systems are of a self limiting ALD-type. Nevertheless, temperature dependent growth was observed in several systems. The width of the ALD windows shows correlations with the length of the carbon chains. Fourier transform infrared spectroscopy clearly proved that the deposited films are of a hybrid character, where the carboxylic acids primarily form bidentate complexes, though bridging complexes may also form. All films are X-ray amorphous as deposited. The films were further analyzed by atomic force microscopy for surface roughness and topography, UV-Vis spectroscopy and ellipsometry for optical properties, and the goniometer method for measuring sessile drops for surface wetting properties. Apart from the oxalic and malonic acid-TMA systems, the films are stable in contact with water. The films are generally smooth, transparent and have a refractive index close to 1.5. The complete coverage and accurate growth control offered by the ALD technique is here proven to provide surface-functionalized hybrid materials resembling metal-organic frameworks (MOF), probably as rather dense structures, yet with substantial potential for applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.