Abstract

A method is described here to characterize the physical properties of the cell wall of epidermal cells of living Arabidopsis roots through nanoindentations with an atomic force microscope (AFM) coupled with an optical inverted fluorescence microscope. The method consists of applying controlled forces to the sample while measuring its deformation, allowing quantifying parameters such as the apparent Young's modulus of cell walls at subcellular resolutions. It requires a careful mechanical immobilization of the sample and correct selection of indenters and indentation depths. Although it can be used only in external tissues, this method allows characterizing mechanical changes in plant cell walls during development and enables the correlation of these microscopic changes with the growth of an entire organ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.