Abstract

Investigations have been performed to explore ultrashort laser irradiation effects on the surface topography as well as structural and nonlinear absorption properties of a polymer CR-39. For this purpose, a CR-39 target was exposed in air to 25 fs, 800 nm Ti:sapphire laser radiation at fluences ranging from 0.25 J cm−2 to 3.6 J cm−2. The surface features, structural changes and nonlinear absorption were explored by AFM, Raman Spectroscopy and a Z-scan technique, respectively. Several topographical structures like bumps, explosions and nano cavities have been observed on the irradiated surface. Raman spectroscopy reveals changes in the fundamental structure of the polymer after the irradiation. Nonlinear absorption data contained by the Z-scan technique predict the dominance of three-photon absorption in case of pristine CR-39. Furthermore, nonlinear absorption (three or two photon) increases with increasing laser fluences and is well correlated with surface and structural changes revealed by AFM and Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.