Abstract
The influence of fixation, air-drying and liquid-imaging on the morphology as well as on the viscoelasticity of malignant mesothelioma cells was studied by atomic force microscopy. In this study, dehydrated cells were more easily scanned and offered faster data recording than hydrated cells. However, the influence of fixation strength was more noticeable. Strong fixation induced flattening of the cytoplasm and loss of nuclear structure, resulting in a clearly visible cytoskeleton which could be easily seen as fibres orientated in the direction of the cell growth. By contrast, the morphology of hydrated cells was influenced to a lesser degree on fixation and showed an overall 'rounding' of the surface with vague, ill-defined structures. Nuclear areas of these samples were difficult to image. Viscoelasticity measurements also exhibited large differences. Dehydrated cells were much harder and showed a uniform indentation profile over the whole cell that was independent of fixation. Indentation on hydrated cells was large and depended on the height of the measuring spot, the submembranous structure and, to a lesser extent, on fixation. To calculate an overall 'cellular' viscoelasticity, different methods were tested on these samples. Indentations of multiple, randomly chosen points, covering the whole cell, were measured and averaged to yield a mean indentation score. We avoided the thin and shadowed areas since it was shown that these regions were less suited for measuring. Using this design, large viscoelasticity differences were found, on which the influence of the external parameters could be shown. In another set-up, layered imaging was tried. However, long data acquisition times caused cellular activation and rearrangement, making this scanning mode unsatisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.