Abstract

We present theoretical study of the atomic, electronic and transport properties of silicon nanowires and single-walled carbon nanotubes using atomistic simulation. For silicon nanowires, we present investigation of the atomic structure and electronic properties of ultrathin nanowires with different surface structures and growth directions and the trend of such property variations with increasing nanowire diameters using density functional theory with both local atomic basis and plane waves. For single-walled carbon nanotubes, we present self-consistent tight-binding study of the electronic and transport properties of semiconducting carbon nanotubes in contact with metal electrodes. We discuss insights obtained from such atomistic study on the contact, and diameter dependence of junction conductance. Finally, we examine the application of single-walled carbon nanotubes as novel nanofluidic channels by analyzing the structure and kinetics of water molecules confined and transported through the nanotube channels using molecular dynamics simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.