Abstract
From studies of single-layer graphene, the authors find that atomic deuteration indeed does lead to reversible chemisorption. However, they find that atomic deuterium treatment of many-layer epitaxially grown graphene on C-face 4H-SiC only affects the surface graphene layer and the buried graphene/SiC interface. Raman and x-ray diffraction experiments reveal that only a small portion of the graphene is affected, showing no interlayer incorporation of deuterium. However, x-ray reflectivity and cross-sectional transmission electron microscopy demonstrate a change of the buried graphene/SiC interface, which resembles a delamination of graphene from the substrate. In some cases, multiple atomic treatments lead to complete delamination of the graphene film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.