Abstract

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as monitoring tectonic movements and landslides or extracting digital elevation models. One of its major limitations is the atmospheric variability, and in particular the high water vapor spatial and temporal variability, which introduces an unknown delay in the signal propagation. On the other hand, these effects might be exploited, so as InSAR could become a tool for highresolution water vapor mapping. This paper describes the approach and some preliminary results achieved in the framework of an ESA funded project devoted to the mitigation of the water vapor effects in InSAR applications. Although very preliminary, the acquired experimental data and their comparison give a first idea of what can be done to gather valuable information on water vapor, which play a fundamental role in weather prediction and radio propagation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.