Abstract

The gas-phase reaction between HOSO and NO(2) was examined using density functional theory. Geometry optimizations and frequency computations were performed at the B3LYP/6-311++G(2df,2pd) level of theory for all minimum species and transition states. The ground-state potential energy surface, including activation energies and enthalpies, were calculated using the ab initio CBS-QB3 composite method. The results suggest that the addition of HOSO and NO(2) leads to two possible intermediates, HOS(O)NO(2) and HOS(O)ONO, without any energy barrier. The HOS(O)NO(2) easily decomposes into HONO + SO(2) through the low energy product complex HONO···SO(2), whereas the HOS(O)ONO dissociates to HOSO(2) + NO products. This latter dissociation is preferred from the isomerization of the HOS(O)ONO to HOS(NO)O(2). Also, HOS(O)NO(2) isomerization to HOS(O)ONO is hindered due to the presence of a large energy barrier. From the thermodynamic aspect, the main products in the title reaction are HONO + SO(2), whereas HOSO(2) + NO are expected as a minor products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.