Abstract

Current knowledge regarding deposition of atmospheric pollutants to mountain ecosystem is reviewed focusing on the mountains of eastern North America. Despite a general paucity of published data on the subject, some generalization emerge. Wet deposition (i.e. precipitation input) of SO42−, NO3−, H+ and Pb tends to increase with elevation, primarily because of the orographic increase in precipitation amount. Cloud water deposition of these substances can be very significant for mountain forests, but is highly variable spatially because of its strong dependence on wind speed, cloud characteristics, and vegetation canopy structure, which are all heterogeneously distributed. Dry deposition has not been quantified sufficiently to draw empirical generalizations, but the processes involved are discussed with regard to expected elevational trends. Based on the few studies in which total annual deposition (wet, dry, plus cloud water inputs for an entire year) has been measured, it appears that some high-elevation sites in the Appalachian Mountains receive substantially more SO42−, NO3+ deposition than do typical low-elevation sites. The amount of elevational increase depends largely on the amount of cloud water deposition at the mountain site. Data from two clusters of sites in the northern Appalachians indicate that total deposition of SO42−, NO3−, and H+ to mountaintop sites is typically 3–7 times greater than deposition to nearby lowland sites. Similarly, some studies of Pb accumulation in organic soil horizons suggest a two- to four-fold increase from lowlands to mountaintops. Deposition in mountain areas can be highly variable over short distances because of the patchiness of meteorological conditions and vegetation canopy characteristics, and also because exposed trees and forest edges can receive deposition loads much higher than the landscape average. Night-time and early-morning O3 concentrations are greater at high-elevation than at low-elevation sites. Daytime O3 levels are equal or slightly higher at high-elevation sites. Additional studies are suggested which would allow better characterization of pollutant exposure along elevational gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.