Abstract

This paper will discuss efforts to design an atmospheric, non-contact, low cost/high speed electrochemical machining process to produce next-generation ellipsoidal x-ray optics via a scalable pulse-reverse electrochemical manufacturing approach. Unlike conventional electrochemical surface finishing processes, the pulse-reverse process does not require low conductivity/high viscosity electrolytes or the addition of hazardous chemical species (like HF) to remove the oxide film associated with electropolishing of passive and strongly passive materials like Si. This paper will focus on the potential of pulse/pulse reverse electrochemical machining process to produce optics such as Kirkpatrick-Baez mirrors and compound refractive lenses for X-ray optic technologies being used at synchrotron facilities. Initial trials of this atmospheric, non-contact process demonstrated a material removal rate of 40 µm/h, 100 times faster than the currently used Elastic Emission Machining technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.