Abstract

David A. Wedin and David Tilman (Reports, 6 Dec., p 1720 ) show that increased nitrogen inputs to terrestrial ecosystems might cause smaller increases in the capacity of those ecosystems to store carbon than expected. Their findings are important because nitrogen inputs have increased dramatically over the past decades through fertilizer production, cultivation of nitrogen-fixing legumes, and production of oxides of nitrogen associated with fossil-fuel burning ( 1 ). However, the simultaneous increase in atmospheric carbon dioxide (CO 2 ) concentrations caused by burning fossil fuels is likely to at least partially counteract the processes that limited carbon storage in Wedin and Tilman's experiment. CO 2 enrichment generally increases the amount of carbon fixed by plants per unit of nitrogen taken up from the soil, particularly in carbon-3 (C 3 ) species ( 2 ) such as those that invaded their nitrogen-enriched plots. Compared with the C 4 species that thrived before nitrogen was added, the invading C 3 species have relatively lower C-to-N ratios, limiting the amount of carbon stored in response to nitrogen input. However, with elevated CO 2 tending to increase the C-to-N ratio of these C 3 plants, N and CO 2 enrichment in concert would likely cause greater C storage than observed by Wedin and Tilman. Rising atmospheric CO 2 may also increase N inputs to terrestrial ecosystems, amplifying the direct human impact on the N cycle. CO 2 enrichment often increases the growth of plants housing N-fixing bacteria in their roots, and this stimulation is relatively larger than non-N-fixing plants ( 3 ). Thus, in addition to the direct anthropogenic stimulation of N inputs to terrestrial ecosystems through agriculture and fossil-fuel burning ( 1 ), humans may indirectly increase N inputs to terrestrial ecosystms by increasing atmospheric CO2 concentrations. The interaction between CO2 and N enrichment, as well as shifts in plant species, will likely influence future C storage by the terrestrial biosphere

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.