Abstract

Even though it is a noble metal, silver will corrode in ambient atmospheres, predominantly by reacting with sulfur-containing gases such as hydrogen sulfide (H2S) and carbonyl sulfide (OCS) to form the silver sulfide (Ag2S) acanthite. Other aspects of the environment, such as relative humidity and the presence of oxidizing species, also play a critical role. With the emergence of silver nanoparticles for a range of technological and medical applications, there has been a revival of interest in the corrosion behavior of this important metal. This article reviews the current understanding of the atmospheric corrosion of silver in both the bulk and nanoparticle forms. Gaps in our current understanding and areas for future investigation are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.