Abstract
The corrosion behavior of copper exposed in a simulated coastal-industrial atmosphere has been investigated using weight loss measurement, scanning electron microscopy, X-ray diffraction, potentiodynamic polarization and in-situ electrochemical impedance spectroscopy (EIS) with micro-distance electrodes. The results show that corrosion kinetics follows the empirical equation D = Atn. The main corrosion products are composed of Cu2O, Cu2Cl(OH)3 and Cu4Cl2(OH)6. A two-layer structure comprising a loose outer layer and a compact inner layer forms the corrosion products during corrosion process. SO2 has been found to promote the formation of Cu4Cl2(OH)6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.