Abstract

Asynchronous transfer mode (ATM) network design and optimization at the call-level may be formulated in the framework of multirate, circuit-switched, loss networks with effective bandwidth encapsulating cell-level behavior. Each service supported on the (wide area, broadband) ATM network is characterized by a rate or bandwidth requirement. Future networks will be characterized by links with very large capacities in circuits and by many rates. Various asymptotic results are given to reduce the attendant complexity of numerical calculations. A central element is a uniform asymptotic approximation (UAA) for link analyses. Moreover, a unified hybrid approach is given which allows asymptotic and nonasymptotic methods of calculations to be used cooperatively. Network loss probabilities are obtained by solving fixed-point equations. A canonical problem of route and logical network design is considered. An optimization procedure is proposed, which is guided by gradients obtained by solving a system of equations for implied costs. A novel application of the EM algorithm gives an efficient technique for calculating implied costs with changing traffic conditions. Finally, we report numerical results obtained by the software package TALISMAN, which incorporates the theoretical results. The network considered has eight nodes, 20 links, six services, and as many as 160 routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.