Abstract

Distinguishing between adaptive and maladaptive cardiovascular response to exercise is crucial to prevent the unnecessary termination of an athlete's career and to minimize the risk of sudden death. This is a challenging task essentially due to the substantial phenotypic overlap between electrical and structural changes seen in the physiological athletic heart remodeling and pathological changes seen in inherited or acquired cardiomyopathies. Stress testing is an ideal tool to discriminate normal from abnormal cardiovascular response by unmasking subtle pathologic responses otherwise undetectable at rest. Treadmill or bicycle electrocardiography, transthoracic echocardiography, and cardiopulmonary exercise testing are common clinical investigations used in sports cardiology, specifically among participants presenting with resting electrocardiographic abnormalities, frequent premature ventricular beats, or non-sustained ventricular arrhythmias. In this setting, as well as in cases of left ventricular hypertrophy or asymptomatic left ventricular dysfunction, stress imaging and myocardial tissue characterization by cardiovascular magnetic resonance show promise. In this review, we aimed to reappraise current diagnostic schemes, screening strategies and novel approaches that may be used to distinguish adaptive remodeling patterns to physical exercise from early phenotypes of inherited or acquired pathological conditions commanding prompt intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.