Abstract

Atherosclerosis is the underlying reason for nearly all causes of coronary artery disease and peripheral arterial disease and many cases of stroke. Atherosclerosis is a systemic inflammatory process characterised by the accumulation of lipids and macrophages/lymphocytes within the intima of large arteries. The deposition of these blood borne materials and the subsequent thickening of the wall often significantly compromise the residual lumen leading to ischaemic events distal to the arterial stenosis. However, these initial fatty streak lesions may also evolve into vulnerable plaques susceptible to rupture or erosion. Plaque disruption initiates both platelet adhesion and aggregation on the exposed vascular surface and the activation of the clotting cascade leading to the so-called atherothrombotic process. Yet, platelets have also been shown to be transporters of regulatory molecules (micro-RNA), to drive the inflammatory response and mediate atherosclerosis progression. Here we discuss our current understanding of the pathophysiological mechanisms involved in atherogenesis - from fatty streaks to complex and vulnerable atheromas - and highlight the molecular machinery used by platelets to regulate the atherogenic process, thrombosis and its clinical implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.