Abstract

The fine-pitch and small line width Cu redistribution lines (RDLs) serve as the key factor in achieving high-density advanced fan-out packaging products. However, the dimension scaling of the next generation Cu RDL will cause more severe electromigration damage to the narrow Cu interconnects. The present study reported the microstructure variations and the failure mechanisms involved in an advanced 2μm/2 μm line/spacing Cu RDL interconnect under the electromigration experiment at an extremely high current density, 6 × 106 A/cm2, to investigate the electrical-thermal coupling interactions. The athermal electromigration effect induced rapid mass transport of Cu atoms, giving rise to RDL width reduction (migrated Cu depletion) and width growth (migrated Cu accumulation) phenomena. Meanwhile, the large amount of Joule heat generation induced the high-temperature material degradation of the polyimide (PI) dielectric layer and the delamination across the RDL/dielectric interface. The thermal stress resulting from the coefficient of thermal expansion mismatch further induced RDL displacement within the degraded PI dielectric layer near the current-stressed Cu RDL. The results suggest the predominant thermal electromigration effects on the PI degradation and RDL displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.