Abstract
Obesity-associated adipose tissue hypoxia plays a pivotal role in insulin resistance via impaired adipocyte dysfunction including mitochondria dysfunction. In this study, we investigated the involvement of hypoxia-inducible ATF3 in adipocyte hypoxia-mediated mitochondrial dysfunction. While HIF-1α and ATF3 were increased in white adipose tissue of high fat diet (HFD) obese mice compared with control lean mice, mitochondria-related genes were significantly reduced. Treatment with hypoxia mimetics CoCl2 or incubation with 2% O2 impaired mitochondria function as demonstrated by decreases in ATP production, NADH dehydrogenase activity, mitochondrial membrane potential, and reduced expression of mitochondria-related genes including NRF-1, PGC-1α, COX1 and SOD in 3T3-L1 adipocyte cells. Furthermore, overexpression of ATF3 in 3T3-L1 cells also decreased mitochondria function as well as expression of mitochondria-related genes. ATF3 knockdown in 3T3-L1 cells partly prevented the hypoxia-mediated decrease in mitochondria function and expression of mitochondria-related genes. The mitochondria-related genes were decreased in white adipose tissue of ATF3-overexpressing mice compared with wild-type mice. These results suggest that ATF3 may play a role in adipocyte hypoxia-mediated mitochondrial dysfunction in obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.