Abstract
Time-delay reservoir computing uses a nonlinear node associated with a feedback loop to construct a large number of virtual neurons in the neural network. The clock cycle of the computing network is usually synchronous with the delay time of the feedback loop, which substantially constrains the flexibility of hardware implementations. This work shows an asynchronous reservoir computing network based on a semiconductor laser with an optical feedback loop, where the clock cycle (20 ns) is considerably different to the delay time (77 ns). The performance of this asynchronous network is experimentally investigated under various operation conditions. It is proved that the asynchronous reservoir computing shows highly competitive performance on the prediction task of Santa Fe chaotic time series, in comparison with the synchronous counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.