Abstract

This paper investigates an asynchronous event-triggered linear sliding mode control (SMC) problem for T-S fuzzy singular systems with external disturbances. The generalized regular form of T-S fuzzy singular systems is presented to obtain the reduced-order sliding motion, which removes the constraints that all the subsystems share the same input matrix. Based on the generalized regular form, the singular matrix and the state variables are used to design the triggering function, which fully employs the characteristics of singular systems compared with the related results. Furthermore, an asynchronous event-triggered SMC (ETSMC) law is designed to guarantee the existence of the practical sliding mode, and the controller gains can be obtained via the admissibility analysis of the reduced-order sliding motion. Based on the designed singular-matrix-dependent event triggering mechanism and the asynchronous ETSMC law, the positive lower bound of the inter execution time can be guaranteed. Finally, two simulation examples are presented to verify the effectiveness of the obtained results, and some comparison results with the relevant methods are presented to illustrate the advantages of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.