Abstract
We consider a periodic pseudo-differential operator on the real line, which is a lower-order perturbation of an elliptic operator with a homogeneous symbol and constant coefficients. It is proved that the density of states of such an operator admits a complete asymptotic expansion at large energies. A few first terms of this expansion are found in a closed form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.