Abstract
The convolution of indicators of two conjugacy classes on the symmetric group S q is usually a complicated linear combination of indicators of many conjugacy classes. Similarly, a product of the moments of the Jucys–Murphy element involves many conjugacy classes with complicated coefficients. In this article, we consider a combinatorial setup which allows us to manipulate such products easily: to each conjugacy class we associate a two-dimensional surface and the asymptotic properties of the conjugacy class depend only on the genus of the resulting surface. This construction closely resembles the genus expansion from the random matrix theory. As the main application we study irreducible representations of symmetric groups S q for large q. We find the asymptotic behavior of characters when the corresponding Young diagram rescaled by a factor q - 1 / 2 converge to a prescribed shape. The character formula (known as the Kerov polynomial) can be viewed as a power series, the terms of which correspond to two-dimensional surfaces with prescribed genus and we compute explicitly the first two terms, thus we prove a conjecture of Biane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.