Abstract
In this paper we study the asymptotic tail behavior for a non-standard renewal risk model with a dependence structure and stochastic return. An insurance company is allowed to invest in financial assets such as risk-free bonds and risky stocks, and the price process of its portfolio is described by a geometric Lévy process. By restricting the claim-size distribution to the class of extended regular variation (ERV) and imposing a constraint on the Lévy process in terms of its Laplace exponent, we obtain for the tail probability of the stochastic present value of aggregate claims a precise asymptotic formula, which holds uniformly for all time horizons. We further prove that the corresponding ruin probability also satisfies the same asymptotic formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.