Abstract

This paper focuses on asymptotic results for linear Hawkes processes with large and small baseline intensities. The intensity process is one of the main tools used to work with the dynamical properties of a general point process. It is of essential interest in credit risk study, in particular. First, we establish a large deviation principle and a moderate deviation principle for the Hawkes process with large baseline intensity. In addition, a law of large numbers and a central limit theorem are also obtained. Second, we observe asymptotic behaviors for the Hawkes process with small baseline intensity. The main idea of the proof relies on the immigration-birth representation and the observations of the moment generating function for the linear Hawkes process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.