Abstract
Abstract In this paper, the sampled measurement is used to estimate the neuron states, instead of the continuous measurement, and a sampled-data estimator is constructed. Leakage delay is used to unstable the neuron states. It is a challenging task to develop delay dependent condition to estimate the unstable neuron states through available sampled output measurements such that the error-state system is globally asymptotically stable. By constructing Lyapunov–Krasovskii functional (LKF), a sufficient condition depending on the sampling period is obtained in terms of linear matrix inequalities (LMIs). Moreover, by using the free-weighting matrices method, simple and efficient criterion is derived in terms of LMIs for estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.