Abstract

Fokker-Planck equations for nonlinear processes are solved asymptotically in the limit k→0 where k is the Boltzmann constant. It is shown that the leading asymptotic solutions for conditional (two-gate) distribution functions simply correspond to generalizations of the Onsager-Machlup theory to nonlinear processes. The asumptotic solution method used in the paper is similar to the well-known W.K.B. method in quantum mechanics. A stability criterion of nonlinear irreversible processes is also considered and compared with the Glansdorff-Prigogine stability criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.