Abstract
We consider a telegraph process with elastic boundary at the origin studied recently in the literature (see e.g. Di Crescenzo et al. (Methodol Comput Appl Probab 20:333–352 2018)). It is a particular random motion with finite velocity which starts at x ≥ 0, and its dynamics is determined by upward and downward switching rates λ and μ, with λ > μ, and an absorption probability (at the origin) α ∈ (0,1]. Our aim is to study the asymptotic behavior of the absorption time at the origin with respect to two different scalings: $x\to \infty $ in the first case; $\mu \to \infty $ , with λ =β μ for some β > 1 and x > 0, in the second case. We prove several large and moderate deviation results. We also present numerical estimates of β based on an asymptotic Normality result for the case of the second scaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.